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Compared to geometrical acoustics, wave-based methods which solve the wave equation either in the
time domain or in the frequency domain are known for their high accuracy. However, their systematic
use as professional room acoustic simulation tools is less popular due to the modelling effort and com-
putational time requirements, especially in the case of complex scenarios. This paper aims at providing
guidelines for the use of two wave-based methods in complex room acoustics simulations, namely the
finite-difference time-domain (FDTD) method and the fast multipole boundary element method
(FMBEM). Numerical experiments are conducted to address the convergence issues of the two solvers,
more specifically, the selection of the convergence tolerance of the iterative solver in FMBEM and the
temporal sampling frequency in FDTD. To evaluate the capability of the solvers in simulating complex
scenarios, five cases with increasing complexity of material input data are presented. The results show
that both solvers give close predictions for various room acoustics parameters. In addition, an uncertainty
sensitivity study is performed in a case where experimental data is available. Large deviations between
measured and simulated reverberation time reveal that typical material data-sets poorly represent the
behaviour of real materials in a room acoustics context. Lastly, the efficiency of the two solvers is dis-
cussed. With parallelization implemented, both solvers can simulate sizeable room acoustic problems
with good accuracy within a reasonable time.

� 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Digitalization brings new opportunities and innovations to
many industries. In the context of room acoustics, computer-
aided modelling and simulations have enabled efficient acoustic
design, analysis and auralization [1,2]. Over the years, geometrical
acoustics (GA) has been widely used and became the dominant
solution for large geometrical models and/or at high frequencies.
Various techniques including the image source method [3,4], ray
and beam tracing techniques [5–7], have been developed and
advanced. Such techniques usually simplify the sound waves as
rays, and consider the energy and the propagation delay of each
sound wave. The contribution perceived by the receiver is
essentially the summation of either the energy component or the
pressure component along the transfer paths. However, this ‘‘ray-
like” propagation modelling may not be able to capture some of
the wave phenomena. As a matter of fact, several state-of-the-art
GA software were evaluated by recent round robin tests where
large model errors and uncertainties were present due to the
assumptions of GA and insufficient modeling of diffraction [8].

In the mid-low frequency range, especially when wave phe-
nomena are prominent, wave-based methods are reported to be
more accurate [9,10]. However, it is not obvious that they can give
convincing results out of the box considering the complexities of
the algorithms and the numerical uncertainties. In addition, there
seems to be a lack of round robin tests for the wave-based methods
in room acoustic modelling and simulations in the literature. This
paper selects and evaluates two representative numerical meth-
ods: the fast multipole boundary element method (FMBEM) and
the finite-difference time-domain (FDTD) method. The frequency
domain BEM is known as a convenient numerical method for
unbounded acoustic problems as its integral equation inherently
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satisfies the Sommerfeld radiation condition [11]. The fast multi-
pole method (FMM) [12] enables BEM to handle large acoustic
models at high frequencies, thus making it more efficient in solving
large bounded problems such as room acoustics [13–15]. As a clas-
sical time-domain simulation method, FDTD has shown good capa-
bilities in a wide range of acoustic applications including room
acoustic simulations [1,16,17]. In practice, however, it is a non-
trivial task to accurately simulate a complex scenario with com-
plex geometry and multiple frequency-dependent materials. In
order to evaluate the capability of the two solvers in simulating
such complex scenarios, five cases in which the material input data
is gradually complexified are presented.

To interpret and understand the simulated results, the uncer-
tainties from the numerical simulations shall be clarified. In addi-
tion to the uncertainties from the model geometry [18] and
material input data [7,10], the quantification of uncertainty speci-
fic to each numerical solver is essential as it indicates the reliability
of the solution. Since the two wave-based solvers differ substan-
tially, the numerical setups and conversions, e.g., for the acoustic
source and boundary conditions, are addressed in order to avoid
the misaligned input for the two solvers. The convergence issue
which affects both accuracy and efficiency is critical for both sol-
vers. Numerical experiments are conducted to discuss the selection
of the convergence tolerance in FMBEM and the temporal sampling
frequency in FDTD.

Last but not least, the limitations of wave-based solvers are gen-
erally attributed to their high computational cost, especially when
the problem size gets large. Recent advances in high-performance
computing (HPC) systems such as multi-core and many-core archi-
tectures [16,19,20] allow for efficient parallelization strategies and
thus reduce the computational time significantly. In the acoustic
scenarios presented here, it is shown that the algorithm enhance-
ment, e.g., FMM for BEM, and the hardware accelerations from HPC
strengthen the capabilities of the wave-based methods in simulat-
ing frequencies below the Schroeder frequency and well above.

The paper is organized as follows. Section 2 reviews the formu-
lations derived in the FMBEM and FDTD solvers. The definitions
and conversions of acoustic source and boundary conditions
between the two solvers are also addressed. Section 3 gives an
overview of the uncertainties in room acoustic simulations when
using the two wave-based solvers. In Section 4, the selection of
the convergence tolerance in FMBEM and the sampling frequency
in FDTD are discussed via numerical experiments. Five scenarios
with increased material input data complexity are presented in
Section 5 in order to evaluate the capability of the solvers in sim-
ulating multiple frequency-dependent materials. The uncertainties
of the material input data from two data-sets are quantified to bet-
ter understand the discrepancies observed in the comparison
between simulations and measurements. Section 5 also discusses
the computational efficiency of the two solvers to demonstrate
the potentials of the solvers in practical simulations.

2. Numerical methods

2.1. Mathematical formulation for acoustic problems

The linear wave equation is expressed in the 3D Cartesian coor-
dinate system as follows

@2p
@t2

¼ c2r2p; ð1Þ

where r2 ¼ @2

@x2 þ @2

@y2 þ @2

@z2

� �
is the Laplace operator, p x; y; z; tð Þ is the

acoustic pressure, and c is the speed of sound in the fluid.
When dealing with time-harmonic linear acoustic waves, i.e.,

continuous waves at constant angular frequency x which yields
2

a harmonic time dependence of e�ixt , the governing differential
equation can be written as the Helmholtz equation

r2pþ k2p ¼ 0; ð2Þ
where p x; y; z; kð Þ is the steady acoustic pressure and k ¼ x=c is the
acoustic wavenumber at angular frequency x.

2.1.1. Explicit FDTD formulation
To solve Eq. (1) for p using the explicit FDTD method, Eq. (1) is

discretized in space and time and the second-order partial deriva-
tives are substituted with finite differences, leading to, for the 3D
standard rectilinear (SRL) scheme adopted here (Ref. [21], p.332),

d2t p
n
l;m;i ¼ k2 d2x þ d2y þ d2z

� �
pn
l;m;i; ð3Þ

where k ¼ cT=X is the Courant number with time step T and grid
spacing X. pn

l;m;i � p x; y; z; tð Þjx¼lX;y¼mX;z¼iX;t¼nT is the update variable,
n denotes the time index and l;m, and i are the spatial indices in
the x-, y-, and z-direction, respectively. d2t ; d

2
x ; d

2
y ; d

2
z are the second-

order derivative centered finite-difference operators defined as

d2t p
n
l;m;i � pnþ1

l;m;i � 2pn
l;m;i þ pn�1

l;m;i; ð4Þ
d2xp

n
l;m;i � pn

lþ1;m;i � 2pn
l;m;i þ pn

l�1;m;i; ð5Þ
d2yp

n
l;m;i � pn

l;mþ1;i � 2pn
l;m;i þ pn

l;m�1;i; ð6Þ
d2z p

n
l;m;i � pn

l;m;iþ1 � 2pn
l;m;i þ pn

l;m;i�1: ð7Þ
The update equation, expressing the future pressure values as a

function of the present and past pressure values, can be found by
substituting expressions 4-7 into Eq. (3), leading to

pnþ1
l;m;i ¼ k2 pn

lþ1;m;i þ pn
l�1;m;i þ pn

l;mþ1;i þ pn
l;m�1;i þ pn

l;m;iþ1 þ pn
l;m;i�1

� �
þ 2 1� 3k2

� �
pn
l;m;i � pn�1

l;m;i:

ð8Þ
Additionally, the FDTD simulations were run with the forward

difference boundary meaning that the centered difference formula-
tion of the partial derivative in the time domain and the forward
difference formulation in the spatial domain are used. With such
formulation, the boundary conditions can be expressed by

pnþ1
l;m;i � pn�1

l;m;i

2T
¼ �cn

pn
lþ1;m;i � pn

l;m;i

X
; ð9Þ

pnþ1
l;m;i � pn�1

l;m;i

2T
¼ �cn

pn
l;mþ1;i � pn

l;m;i

X
; ð10Þ

pnþ1
l;m;i � pn�1

l;m;i

2T
¼ �cn

pn
l;m;iþ1 � pn

l;m;i

X
; ð11Þ

where n is the specific acoustic impedance of the boundary (n=1þR
1�R).

Finally, by deriving Eq. (8) for different node positions a general
solution for the node update can be expressed by

pnþ1
l;m;i ¼

1
1þkb

k2 pn
lþ1;m;iþpn

l�1;m;iþpn
l;mþ1;iþpn

l;m�1;iþpn
l;m;iþ1þpn

l;m;i�1

� �h
þ 2�Kk2
� �

pn
l;m;iþ kb�1ð Þpn�1

l;m;i�; ð12Þ

where b= 6�Kð Þ
2n , and K equals 6 in free space, 5 at a wall, 4 at an edge,

and 3 at a corner.

2.1.2. Indirect BEM and fast multipole acceleration
The frequency domain BEM relates the field variables in the

continuum domain to the distribution of the associated boundary
variables on the boundary surface of the domain. As such, it only
requires the discretization of the boundaries of the target problem.

In an indirect boundary integral formulation [22], the boundary
variables are the single-layer and double-layer potentials defined
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as the difference of the normal derivative of the pressure and of the
pressure across the boundary surface C, respectively. They can be
written as

r yð Þ ¼ @p yþð Þ
@nyþ

� @p y�ð Þ
@ny�

; y 2 C; ð13Þ

l yð Þ ¼ p yþð Þ � p y�ð Þ; y 2 C ; ð14Þ
where y denotes a source position vector on the boundary surface C
and the superscripts + and � are associated with the same and
opposite direction of the unit normal vector ny to C, respectively.
Using the single- and double-layer potentials, the acoustic pressure
at the position vector x in the acoustic domain X is given by the
indirect Kirchhoff-Helmholtz integral equation

p xð Þ ¼
Z
C

G x; yð Þr yð Þ � @G x; yð Þ
@ny

l yð Þ
� �

dC; ð15Þ

where G x; yð Þ denotes the Green’s function satisfying Eq. (2) and
whose 3D form is given as

G x; yð Þ ¼ eikjx�yj

4pjx� yj : ð16Þ

Assuming a thin boundary surface (i.e. C � Cþ � C�), the asso-
ciated boundary conditions of the Helmholtz equation can be
reformulated using Eqs. 13,14 as follows

l yð Þ ¼ 0; p yð Þ ¼ p yð Þ; on Cp; ð17Þ
r yð Þ ¼ 0;

@p yð Þ
@n

¼ �jq0xvn yð Þ; on Cv ; ð18Þ
r yð Þ ¼ �jkbl yð Þ; @p yð Þ

@n
¼ �jkbp yð Þ; on CZ ; ð19Þ

where the normalized boundary admittance is defined as b ¼ Z0=Zs.
Z0 ¼ q0c is the characteristic impedance of the fluid with density q0

and Zs is the acoustic impedance of the boundary surface. p is the
prescribed pressure and vn is the prescribed normal velocity.
Cp;Cv , and CZ represent the Dirichlet, Newmann and Robin bound-
aries, respectively. At each position on the boundary surface, there
exists only one independent variable which is either the single- or
the double-layer potential. Therefore, the indirect boundary integral
formulation Eq. (15) can be reformulated as

p xð Þ ¼
Z
Cp

r yð ÞG x; yð ÞdCp �
Z
Cv

l yð Þ @G x; yð Þ
@ny

dCv

�
Z
CZ

l yð Þ @G x; yð Þ
@ny

þ jkbG x; yð Þ
� �

dCZ : ð20Þ

Subsequently, Eq. (20) can be used to rewrite the boundary con-
ditions in Eqs. (17)–(19) in a compact form by using a function f of
unknowns r and l, as follows

f p r;lð Þ ¼ p; on Cp; ð21Þ
f v r;lð Þ ¼ �jq0xvn; on Cv ; ð22Þ
f Z r;lð Þ ¼ 0; on CZ : ð23Þ

A variational approach is adopted to avoid Hadamard finite-part
integrals. The equivalent variational statement of Eqs. (21)–(23)
can be written with test functions dr and dl which are typically
chosen to be the same as the shape functions:Z
Cp

f p r;lð ÞdrdCp þ
Z
Cv

f v r;lð ÞdldCv þ
Z
CZ

f Z r;lð ÞdldCZ

¼
Z
Cp

pdrdCp �
Z
Cv

jq0xvndldCv : ð24Þ

The application of conventional BEM in room acoustics is how-
ever limited in practice due to its excessive computational require-
ments for large models and/or at high frequencies. As one of the
most efficient acceleration approaches to the conventional BEM,
3

the fast multipole method [12] separates the BEM system into near
field assembly and far field approximations based on the relative
distances of the boundary variables. The near field pairs, which
typically become a small portion of the problem, are directly eval-
uated via Eq. (24), while the far field pairs can be accelerated via
the fast multipole expansions [12]. In this way, the system matrix
is not necessarily formulated explicitly, which significantly reduces
the memory footprint. Iterative solvers such as generalized mini-
mal residual method (GMRES) can be employed to solve the sys-
tem efficiently. Together with parallelization implemented, the
fast multipole method enables BEM to solve very large acoustic
problems in a more efficient way [20].

2.2. Boundary conditions

In room acoustics, the random-incidence (or statistical) absorp-
tion coefficient is a quantity describing the energy absorbed by a
material with respect to the incident energy. Unlike GA methods,
which often deal with the absorption coefficient as the boundary
definition, the wave-based methods require a phased representa-
tion of the boundary using either a complex surface impedance
or a pressure reflection coefficient. However, for most of the com-
monly used materials in room acoustics, these phased representa-
tions are not available [23]. Several methods have been proposed
to retrieve the surface impedance from the statistical absorption
coefficient [24,25]. It should be noted that this procedure often
yields non-unique solutions unless some constraints for the model
parameters are available. Nevertheless, research on a more accu-
rate conversion is out of the scope of this paper. Instead, our focus
is on the determination of an equivalent boundary definition
between a frequency-domain FMBEM and a time-domain FDTD
solver.

In the present work, Robin boundary conditions are considered,
which benefit from both simplicity and flexibility as they apply to
the surface impedance of the boundary. In the FMBEM implemen-
tation, the random-incidence sound absorption coefficient can be
expressed as a function of the surface impedance as (Ref. [26])

arandom ¼
Z p=2

0
1� Z cos/� 1ð Þ2

Z cos/þ 1ð Þ2
 !

sin 2/d/; ð25Þ

where Z ¼ Zs=Z0 and / is the incidence angle of the acoustic wave.
From Eq. (25), the impedance Zs can be retrieved using the bisection
root-finding method. Fig. 1 shows an example of the estimated Zs

from such a root-finding method.
On the other hand, the employed FDTD solver converts the

random-incidence absorption coefficient into a normal-incidence
absorption coefficient. Therefore, the acoustic impedance of the
surface material Zs from the FMBEM solver is translated into an
input reflection coefficient R for the FDTD solver using

R ¼ Zs � Z0

Zs þ Z0
: ð26Þ

It is also worth mentioning that room surface boundaries are
modelled as locally reacting (i.e. the vibration of the boundary
caused by the waves in the propagation domain are neglected) in
both solvers.

2.3. Acoustic source definition

For simplicity, an omnidirectional sound source is considered in
the present work. Due to the nature of the two solvers, the acoustic
source is defined and modelled differently in the two schemes.

In the frequency domain, such a source is considered as a
frequency-based monopole generating an incident sound field
which can be expressed as



Fig. 1. Surface impedance Zs as a function of absorption coefficient a for different
incidence angles.
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pinc ¼ bS e�ikd

d
; ð27Þ

where bS is the amplitude of the monopole source and d is the dis-
tance from the source.

In time-domain wave-based approaches including the FDTD
method, an omnidirectional sound source can be defined in general
as a source driving function added at the right-hand side of the
wave equation Eq. (3). A commonly used source driving function
consists of a discrete delta sequence that is injected at a single grid
point in the simulation domain. Such an impulse signal is practical
as it is the shortest, thus the most efficient in reducing the overall
simulation run-time [27], and since it comprises all frequencies in
equal amount.

Another consideration regarding source modeling in FDTD con-
cerns the formulation of the update equation at the source grid
point. Different strategies lead to different source types: hard, soft,
and transparent source. The hard source excitation has the simplest
implementation, but introduces a discontinuity in the simulated
acoustic field resulting in a shift of resonant modes from expected
values [27]. Both the soft and transparent source implementations
avoid the scattering from the source node. However, the transpar-
ent source excitation requires a pre-calculation of the grid impulse
response, which can be impractical for some applications [28]. A
soft source is chosen here and the source driving function is scaled
by 1/X3, where X is the spatial grid spacing, to ensure consistency
of the source amplitude across different spatial grid spacings [29].
2.4. Time–frequency domain conversion

While the FDTD method is formulated in the time domain and
computes the acoustic unknowns with elapsed time, FMBEM
solves the time-harmonic acoustic problem in the frequency
domain, meaning that the solution is a steady state result at each
frequency. In order to evaluate the obtained results from the two
solvers, a discrete Fourier transform (DFT) and an inverse DFT
(IDFT) are applied as a post-processing step for the time–frequency
domain conversion. The DFT of a N-long sequence xn, which can
typically be applied on an FDTD-simulated impulse response, is
given as (Ref. [30])

Xk ¼
XN�1

n¼0

xne�i2pN kn: ð28Þ

The length of the FDTD simulated impulse response
T ¼ N � 1ð Þ=f s (where f s is the sampling frequency of the time-
domain signal) is selected such that sufficient energy decay is
observed in the signal to calculate the reverberation time. This also
4

ensures an accurate frequency series after the DFT transformation.
Conversely, the IDFT of the N-long sequence Xk is given as (Ref.
[30])

xn ¼ 1
N

XN�1

k¼0

Xkei
2p
N kn: ð29Þ

To ensure a stable conversion, the frequency resolution
Df 6 1=T of the FMBEM simulations is defined based on the prob-
lem at hand. The determination of the length T of the time-domain
signal can be based on either the former FDTD simulation or an
estimation of the target reverberation time. It is worth mentioning
that the frequency resolution should also be sufficiently fine to
ensure that the phase can be unwrapped correctly. In addition, it
is necessary to run the frequency domain calculations beyond
the crossover frequency (the transition frequency between two,
e.g., one-third octave bands or octave bands) to avoid artifacts from
the abrupt drop on the frequency response. Ref. [9] suggests to
include at least half an octave data points above the crossover fre-
quency. This may not be sufficient if octave-band filters are
applied. In such cases, Ref. [31] suggests one extra full octave band.
The accuracy of those extra frequency bins are less demanding as
they will be heavily attenuated by the crossover filter. As such, a
less strict tolerance (e.g., 10�2) can be used for the iterative solver
in FMBEM to improve the computational efficiency.

3. Model uncertainties

The quantification of uncertainties is recommended in mea-
surements to assess the reliability of the obtained results [32,33].
Computer-aided room acoustic simulations also induce uncertain-
ties, which indicate the reliability of the model and simulation
results. In Ref. [7], uncertainties from GA methods are presented
and discussed. The following paragraphs present an overview of
the uncertainties when using wave-based methods such as FMBEM
and FDTD in room acoustic simulations. The sources of simulation
uncertainties typically come from three aspects: the geometrical
model of the room, the input of material properties, and the algo-
rithm details of the chosen solver.

3.1. Model geometry

The fidelity of a computer-aided design (CAD) model, e.g., the
level of detail (LOD) that should be included in the geometrical
model, has a significant impact on the simulation results [34,18].
However, an appropriate LOD is sometimes difficult to identify a
priori. This often relates to the frequency band of interest and
can be case dependent. A convergence study with different levels
of detail would help to determine the final LOD.

Furthermore, any given CADmodel needs to be discretized to be
used in the wave-based numerical solvers. The wave-based meth-
ods require an element-based representation of the domain, which
normally allows to capture some of the details in the model. Com-
pared to flat surfaces, curved surfaces are generally more challeng-
ing for an accurate discretization. This is especially true for the
conventional FDTD method which operates over regular grids, thus
leading to a staircase approximation of the continuous geometry. If
needed, higher accuracy can be achieved by techniques such as the
contour path modelling [35] and fitted boundary cells [36]. In BEM/
FMBEM, a refined mesh is commonly used for a more accurate
modelling of curved surfaces. In addition, the use of high-order
curved elements [37] or CAD representation [38] directly may
improve the discretization accuracy of the curved surfaces. How-
ever, to the best of the authors’ knowledge, such advanced mod-
elling techniques have not been applied yet to room acoustic
simulations.
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3.2. Material data

In room acoustic simulations, defining the correct material
properties is a well-known challenge [7,39]. A conventional way
is to conduct in situ measurements for the materials in the space.
However, the acoustic properties of non-flat surfaces or volumetric
objects (e.g., furniture) can be difficult to measure in a straightfor-
ward manner. Besides, the available material data from the litera-
ture or databases cannot be directly applied to the computer model
due to the deviations of the data and incomplete information (e.g.,
standard deviation of the measurement). In practice, a common
approach is to adjust the data until a match with some reference
value (e.g., acoustical parameter derived from measured room
impulse responses (RIRs) as in Ref. [40]) is attained. However, there
is still a question on the reliability of such approaches. Therefore,
Section 5 presents an uncertainty sensitivity study on such two
sets of absorption coefficients provided in the Benchmark for Room
Acoustical Simulation (BRAS) database [39].

3.3. Numerical aspects

The wave-based approaches such as FMBEM and FDTD generate
deterministic solutions, which inherently eliminates the stochastic
uncertainties from, e.g., the ray tracing method [7]. On the other
hand, other numerical errors and uncertainties are present in the
wave-based methods. The kernel-related errors create undesired
nonphysical effects. For example, the numerical dispersion in FDTD
causes a cumulative phase error in wave propagation velocity [17].
In BEM/FMBEM, the solution is known to be polluted by the
fictitious frequency from an interior domain [22]. This type of
numerical errors are typically well-studied in the literature.
Another non-kernel-related uncertainty concerns the solver setup,
e.g., discretization of the domain, selection of the acoustic source,
convergence, etc. Because the decisions on these options depend
on the problem at hand, they can sometimes be difficult to select
a priori. The convergence of the solver is critical among all the set-
tings as it affects both accuracy and efficiency of the solver. In
FMBEM, the convergence concerns the selection of an appropriate
tolerance for the iterative solver when a good preconditioner is
being used. In FDTD, the selection of temporal sampling frequency
is of importance as it directly relates to the degree of numerical
dispersion and thus to the accuracy of the simulation results. In
the following numerical experiments, the effects and decision of
the convergence tolerance in FMBEM and temporal sampling fre-
quency in FDTD are discussed.
4. Numerical experiments

4.1. Numerical setup

Unless otherwise stated, the numerical examples presented in
the following sections use a speed of sound value of c ¼ 343:21
m/s, corresponding to a propagation speed in dry air at 20 �C.
The density of dry air q0 at 20 �C is 1.2041 kg/m3. An open source
FDTD solver [19] was employed to run the FDTD simulations with
the SRL scheme. The Courant number k was set to 1=

ffiffiffi
3

p
which cor-

responds to the stability limit of the SRL scheme. A soft source with
a discrete delta function as the driving function was utilized to
excite the FDTD grid. To compensate for the accumulation of DC
caused by the soft source, a DC blocking filter (taken from Ref.
[41]) was applied in a post-processing stage to all FDTD simulation
results. The FMBEM solver is an in–house implementation using an
optimized linear algebra package (LAPACK) routine. Specific to the
FMBEM simulations, linear triangular mesh was employed for the
discretization of the boundary surfaces. A discretization of at least
5

six elements per wavelength was ensured for the frequency band
of interest. Double precision for floating-point numbers was
employed for both solvers.

4.2. Convergence tolerance for FMBEM

For large room acoustic simulations, the model size is often out
of the range for direct solvers in a conventional BEM due to the
extensive memory cost. Utilizing the low rank properties of the
matrix, the FMBEM is typically solved by iterative solvers. Such sol-
vers recursively approximate the solution towards the exact solu-
tion via an iterative procedure. The iterative solvers based on
Krylov subspace, such as GMRES, are commonly used in FMBEM.
If a sufficient number of iterations (e.g., up to the number of
unknowns) is allowed, the GMRES solver should converge to the
exact solution. However, this is typically infeasible in practice as
more iterations will cost extensive computational time and mem-
ory. Thus, it is of importance to determine an appropriate stopping
criterion for the GMRES solver in order to compromise between
efficiency and accuracy.

Another important aspect lies in the convergence rate, e.g., the
number of iterations to reach the target stopping criterion. For an
ill-conditioned system, the GMRES solver may stagnate and strug-
gle to converge [42]. The construction of efficient preconditioner to
the system is an active research field. In this discussion, the sparse
approximate inverse preconditioner based on Frobenius norm
minimization [43] is implemented to improve the convergence.

In the context of room acoustics, a similar convergence study
has been presented in Ref. [13] in which the tolerances were cho-
sen as 10�1;10�2;10�4 and 10�6 in the discussion. However, the
tolerance of 10�3 was missing from the study. Besides, the correla-
tion between the selected tolerance and phase angle was not
revealed in the discussion. In the following numerical experiment,
a cuboid room of size 2 m � 1 m � 1 m is considered. The acoustic
source is placed at 0:04;0:02; 0:02½ �m. Four receivers are located in
the diagonal dimensions of the room as shown in the left schema of
Fig. 2. Four tolerances are considered, � ¼ ½10�2;10�3;10�4;10�6�,
respectively. A uniform frequency-independent absorptive mate-
rial is defined on the boundary with a constant absorption coeffi-
cient of 0:2. The relative differences of complex valued results
are computed separately for magnitude and phase by L2-norm
ep2 ¼ kp� p0k2=kp0k2 and eh2 ¼ kh� h0k2=khref k2, where the differ-
ences are normalized by the reference magnitude p0 and reference
angle href ¼ 2p respectively [44]. The result of � ¼ 10�6 is used as
reference for computing the relative differences.

Fig. 3 shows the relative differences on the magnitude and
phase at various receiver locations. The tolerance of � ¼ 10�2 gives
the highest deviations in both magnitude and phase in all cases,
whereas both � ¼ 10�3 and � ¼ 10�4 show satisfactory accuracy
at most of the frequencies if considering a general engineering
accuracy of 1%. The result of � ¼ 10�2 in the present case differs
from the findings from Ref. [13] in which � ¼ 10�2 is considered
to be a sufficient tolerance in a cubic geometry. In the present
model configuration, � ¼ 10�2 could not provide adequate accuracy
at the receivers. This is due to the fact that the predefined tolerance
is maintained on the solution vector of the system. The accuracy of
the results at field points can vary to some degree as shown in
Fig. 3. It is also observed that the phase difference is generally
smaller than the magnitude difference and may demonstrate a dif-
ferent pattern. In addition, it is not surprising that smaller toler-
ances lead to excessive calculation time, while larger tolerances
terminate the simulation early. For instance, at the simulation of
780 Hz, the GMRES solver requires 70, 99, 126, 671 iterations to
reach the tolerance of 10�2;10�3;10�4;10�5, respectively. The



Fig. 2. Models for the numerical experiments: cuboid room (left) and cubic room (right). a ¼ 1 m.

Fig. 3. Relative differences on the acoustic magnitude (left) and phase (right) for different tolerance settings at various receiver positions. The result of � ¼ 10�6 is used as
reference.
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selection of � ¼ 10�3 over other finer tolerance, e.g., � ¼ 10�5 can
give significant speedup on the iterative solving. It should be men-
tioned that the condition of the BEM system may vary significantly
across bands due to its high dependence on frequency. Thus the
convergence behaviour of the solution could also vary accordingly.
Depending on the practical application, the choice of an appropri-
ate tolerance can be decided based on the problem at hand. In this
analysis, the tolerance of � ¼ 10�3 is a suitable compromise
between efficiency and accuracy. A good agreement can be found
between the results from FDTD and FMBEM using the tolerance
of � ¼ 10�3 in Fig. 4. For very complex scenarios, a smaller � may
be needed.
4.3. Temporal sampling frequency for FDTD

Numerical dispersion, also referred to as discretization or dis-
persion error, is a numerical error inherently present in FDTD sim-
ulations. This error is due to the approximation of continuous
differential operators by discrete operators and depends on both
the propagation direction and the frequency of the simulated
sound waves. The extent of numerical dispersion is commonly
expressed in a single quantity, that is the relative phase velocity
or the percentage of phase velocity error, denoted vp. Based on this
single quantity, an accuracy criterion was defined in Ref. [45] as
the frequency band in which the maximum relative numerical
error does not exceed 2%. For example, under this definition, the
SRL scheme is considered valid up to 0.076�f s Hz, where f s denotes
the temporal sampling frequency of the simulation. Based on the
same quantity, another accuracy criterion was determined in Ref.
[16] using a 10% error limit, leading to a frequency bandwidth valid
up to 0.151�f s Hz. However, such rules for determining an accept-
able error percentage limit cannot be generalized to all possible
simulated scenarios. Thus investigating the effect of changing the
sampling frequency on the accuracy of the simulation results is
of relevance.

Here, such an investigation is conducted on a 1 m � 1 m � 1 m
room as shown in the right schema of Fig. 2. Both rigid and absorp-
tive boundaries (with 0.2 absorption coefficient) are considered.
Fig. 4. Magnitude (left) and phase (right) comparisons of FDTD and FMBEM (� ¼ 10�3)
results which are omitted here.
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The room was simulated for a single source-receiver combination
using both FMBEM and FDTD solvers. The source was located at
[0.2, 0.2, 0.2] m and the receiver at [0.9, 0.9, 0.9] m. The upper limit
of the frequency range of interest was set to f l = 800 Hz. For each
room, the FDTD solver was run separately for one second with
three different sampling frequencies. Two out of three sampling
frequencies were chosen based on percentages of relative phase
velocity at f l used in other studies: 2% (e.g., as in Refs. [46,45])
and 10% (e.g., as in Ref. [16]), leading to f s = 800/0.076
= 10526 Hz and f s = 800/0.151 = 5298 Hz, respectively. The third
and highest sampling frequency considered was set to f s =
800/0.0067 = 119166 Hz, which corresponds to approximately
0.02% of relative phase velocity at f l. This sampling frequency
was chosen such that the spatial grid spacing was fine and close
to a fraction of the room dimensions in order to represent the
geometry as closely as possible. To provide a reference for the com-
parison, the analytic eigenfrequencies f nx ;ny ;nz of the room were also
evaluated using (see e.g., Ref. [26])

f nx ;ny ;nz ¼
c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nx

Lx

	 
2

þ ny

Ly

	 
2

þ nz

Lz

	 
2
s

; ð30Þ

where Lx; Ly, and Lz are the dimensions of the room (in m). nx; ny, and
nz denote the numbers of nodal planes perpendicular to the x-axis,
the y-axis and the z- axis, respectively.

The FDTD-simulated pressure responses were Fourier-
transformed using Eq. (28) to obtain the magnitude responses
shown in Fig. 5. In general, a good agreement between the FMBEM
and the analytical solution can be observed. It also can be seen
from Fig. 5 that the resonance frequencies simulated using the
FDTD method with f s = 10526 Hz and f s = 5298 Hz are strongly
shifted in comparison to the FMBEM simulation. The shift is
observed to a much lower extent when using f s = 119166 Hz.
Besides, the direction of the shift with respect to the analytic
eigenfrequencies is towards lower frequencies. This observation
is in line with the profile of the phase velocity error indicating that
higher frequencies travel at lower speed than lower frequencies.
Furthermore, some of the eigenfrequencies simulated using the
10% error limit are missing. These results also indicate that out of
on the cuboid room model at two receivers. The other two receivers gave similar



Fig. 5. Magnitude response of the cubic room simulated with FMBEM and FDTD with absorptive boundary condition (left) and rigid boundary condition (right). The FDTD
solver was run with the forward difference boundary formulation (see Section 2.1.1).
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the three sampling frequencies, only f s = 119166 Hz is in good
agreement with the FMBEM simulation results and the analytic
eigenfrequencies. Based on these results, f s = 119166 Hz was cho-
sen to simulate the room acoustic scenarios presented in Section 5.

5. Room acoustic scenarios

5.1. Scenarios description

In order to evaluate the capability of the two wave-based sol-
vers in simulating scenarios with different complexities, five cases
with gradually complexified material input data are considered. All
scenarios consisted of the same CAD model corresponding to a
small seminar room (volume � 145 m3) taken from BRAS [39].
BRAS has provided the 3D geometrical model of the room (a per-
spective view is shown in Fig. 6) and the distribution of five room
surface materials: floor, ceiling, concrete, window and plaster. For
each material, two different sets of random-incidence absorption
coefficients given in 31 third octave bands were provided: i) values
based on database values and in situ measurements, which will be
hereafter referred to as initial absorption coefficients; ii) values
adjusted according to Eyring’s equation to match the measured
reverberation time of the room, which will be hereafter referred
to as fitted absorption coefficients. The rationale behind the choice
of using BRAS was to provide material input data for which a com-
parison between simulations and measurements was possible. All
scenarios included a single source and five receivers whose posi-
tions corresponded to measurement positions of RIRs provided in
BRAS.

The following list describes the material input data for each
simulation scenario:

(a) a single frequency-independent material, whose absorption
coefficient is obtained by a linear average of the first 15 bands
Fig. 6. Perspective view of the 3D geometrical model of the small seminar room
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of the ‘‘window” material from the initial absorption
coefficients
(b) five frequency-independent materials, whose absorption
coefficients are obtained by a linear average of the first 15
bands of the corresponding materials from the initial absorption
coefficients
(c) a single frequency-dependent material, whose absorption
coefficients correspond to those of the ‘‘window” material from
the initial absorption coefficients
(d) five frequency-dependent materials, whose absorption coef-
ficients are defined by the corresponding materials from the ini-
tial absorption coefficients
(e) five frequency-dependent materials, whose absorption coef-
ficients are defined by the corresponding materials from the fit-
ted absorption coefficients.

For the FMBEM simulations, a frequency resolution of 0.5 Hz
was used for each scenario, which provided a 2-s long impulse
response after IDFT. To align with FMBEM, the simulation time of
the FDTD solver was 2 s for each scenario.

5.2. Results and discussion

Fig. 7 shows direct comparisons between the FDTD- and
FMBEM-simulated magnitude and phase responses for a single
receiver position (R1) with different combinations of material
input data. The results for the other four receiver positions, which
are omitted here for brevity, gave similar comparisons. Applying
Eq. (29) to the frequency-domain responses from Fig. 7, the time-
domain RIRs were obtained. From these RIRs, the reverberation
time (T20), early decay time (EDT), clarity (C80), and definition
(D50) were evaluated in three octave bands using the function
ita_roomacoustics from the ITA Matlab Toolbox [47]. The calculated
room acoustic parameters are reported in Table 1. The
(CR2 scene from BRAS). Receiver positions are indicated by the letter ‘‘R”.



Fig. 7. Magnitude (left) and phase (right) responses at the receiver R1 from FDTD and FMBEM simulations with different material input data complexity.
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recommended just noticeable difference (JND) values for each
parameter are given by Ref. [48]. These values are considered as
good indicators for the comparison of the two solvers.

As shown in Fig. 7a, a good agreement is obtained for case (a),
where a single absorption coefficient is assigned to all room sur-
faces. This case has a similar setup compared to the cubic and
cuboid rooms discussed in Sections 4.3 and 4.2, whereas the geo-
metrical complexity differs significantly. For the same complex
geometry, both FMBEM and FDTD can provide very close acoustic
predictions over a wide frequency band, although small deviations
are observed as the frequency increases. This indicates that both
solvers can capture the characteristics of the CAD model. Similar
findings can be observed by examining the predicted room acous-
tic parameters, where the difference between the two solvers is
maintained below the JND for most of the entries. A slightly higher
difference between the two solvers is found for EDT at 250 Hz.

In case (b), all five materials with frequency-independent
absorption coefficients in the room are considered. A good match
has been maintained in the low frequency band as shown in
Fig. 7b. Similarly to case (a), small deviations appear at higher fre-
quencies, leading to a slightly higher deviation for the T20 and EDT
at 125 Hz. For the other entries in Table 1, the difference between
the predictions of the two solvers is maintained under JND. These
results suggest that both solvers are capable of handling various
frequency-independent materials. The differences observed are
perhaps due to the accumulated errors from the reflections of the
acoustic waves at different boundary conditions.

Case (c) takes a single frequency-dependent material in the
room. The simulation of the FMBEM is straightforward in this case
as it inherently solves the problem per input frequency. Since the
employed FDTD solver does not handle frequency-dependent
boundary conditions, a series of FDTD simulations are run for all
one-third octave bands which correspond to the available absorp-
tion coefficients from BRAS. Twelve sets of absorption coefficients
are provided to cover the bandwidth of interest (40 – 500 Hz),
which leads to a total of twelve FDTD simulations. Each simulation
output was then Fourier-transformed using Eq. (28). The Fourier
transforms were combined in a single frequency-dependent
response according to their respective one-third octave band. As
the result shown in Fig. 7c, the frequency responses from the
two solvers are matching as good as previous cases. For all the
room acoustic parameters, the difference between the two solvers
is maintained under JND except the EDT at 250 Hz, which is a sim-
ilar to case (a).
Table 1
Room acoustic parameters of the five scenarios (values are averaged over five receivers). Cas
bold.

T20 (s) EDT (s)

Center frequency (Hz) 62.5 125 250 62.5 125

a FMBEM 1.41 1.46 1.17 1.50 1.51
FDTD 1.43 1.42 1.24 1.50 1.54

b FMBEM 3.58 3.51 3.01 3.57 3.69
FDTD 3.58 3.31 2.92 3.45 3.26

c FMBEM 1.25 1.48 1.66 1.21 1.51
FDTD 1.25 1.45 1.72 1.21 1.55

d FMBEM 3.78 3.33 1.91 3.95 3.41
FDTD 3.71 3.20 1.74 3.77 2.97

e FMBEM 2.30 2.03 1.96 2.11 1.86
FDTD 2.22 1.88 1.89 2.06 1.76

Measurement 1.74 1.35 1.63 1.54 1.40

JND 5%1 5%1

*According to Ref. [48].
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The final cases (d) and (e) consider all five frequency-dependent
materials in the numerical model, and thus represent scenarios
close to reality. As such, the measured RIRs collected from BRAS
are also presented as part of the comparison. The two numerical
solvers give close predictions in both magnitude and phase
responses although some deviations are shown at higher frequen-
cies. For the majority of the room acoustic parameters, the differ-
ence between the two solvers is within the JND, whereas the T20

(at 250 Hz in case (d) and at 125 Hz in case (e)) and EDT (at
125 Hz) demonstrate slightly higher deviations. This finding is sim-
ilar to case (b). However, large discrepancies are observed between
the simulated and measured results both in room acoustic param-
eters and frequency responses, as seen in Table 1 and Fig. 7e.

For all the cases, the two solvers can predict convincing results
in the lower frequency range, i.e. at 62.5 Hz center frequency. For
the parameter C80, both solvers predict values whose difference
is within the JND at all bands of interest and for all scenarios. How-
ever, it seems that the two solvers predict slightly different T20 and
EDT values at 125 Hz and 250 Hz, especially when multiple mate-
rials are included in the room. The definition D50, which describes
the early to total sound energy ratio, is also affected. On the other
hand, including frequency-dependent materials does not seem to
produce larger differences between the results from the two sol-
vers in comparison to frequency-independent materials. This latter
observation can be made by comparing case (b) with case (d)-(e)
(multiple materials), as well as in the comparison of case (a) and
(c) (single material). Since the numerical results are very close to
each other, the discrepancies observed with the measurements
are likely due to the incorrect material input data. Thus, the follow-
ing section presents an uncertainty sensitivity study of the initial
and fitted absorption coefficients.

5.3. Uncertainties of material data

To better understand the deviations observed between the
results from the simulations and the measurement shown in
Fig. 7d–7e and Table 1, uncertainties of the material input data
are quantified using the error propagation theory. The error prop-
agation formulation is adapted to the acoustic parameter of inter-
est. Here, the standard deviations of reverberation time are
presented based on the formulations from Ref. [7].

Considering Sabine’s equation, the reverberation time at 20 �C is
given by
es for which the difference between the two solvers exceeded the JND are indicated in

C80 (dB) D50 (%)

250 62.5 125 250 62.5 125 250

1.19 3.0 1.9 2.6 55.9 44.9 49.1
1.34 3.0 2.0 2.3 55.6 45.4 47.9

3.06 �2.9 �3.9 �3.2 26.9 19.9 23.0
3.13 �2.7 �3.5 �3.6 27.7 21.2 22.0

1.66 4.4 1.7 0.5 62.7 44.2 39.2
1.86 4.4 1.9 0.1 62.3 44.7 37.7

1.80 �3.4 �3.5 0.2 24.8 21.6 37.2
1.87 �3.1 �3.0 0.2 26.0 23.3 38.0

1.92 0.7 �0.2 �0.3 44.5 35.6 35.1
2.02 1.1 0.3 �0.5 46.2 37.7 35.0

1.52 3.9 2.8 1.0 58.0 44.3 40.2

1 dB1 5%1



Y. Li, J. Meyer, T. Lokki et al. Applied Acoustics 191 (2022) 108662
T ¼ 0:161V
SA

; ð31Þ

where V is the volume of the room. SA ¼PiSiai where Si and ai are
the surface area and the absorption coefficient of the i material con-
stituting the room, respectively.

Since the variables ai are independent from each other, the
uncorrelated error propagation into the uncertainty of the equiva-
lent absorption can be derived [7] as

r2
SA

� @SA
@a1

ra1

	 
2

þ @SA
@a2

ra2

	 
2

þ . . . ; ð32Þ

which yields

rSA

SA
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

Sirai

� �2r
X
i

Siai

¼ rT

T
6 JND: ð33Þ

The relative standard deviation of T;rT=T , is equal to the rela-
tive standard deviation of the equivalent absorption area rSA=SA
considering the linear correlation between T and SA from Eq. (31).

Both the initial and fitted absorption coefficients are considered
in the uncertainty calculations. For different combinations of
three-out-of-five arbitrarily chosen input materials, Fig. 8 gives
Fig. 8. Correlated limen of the maximum standard deviations r of three random mater
bands of the corresponding absorption coefficients.
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the combined limen of their maximum standard deviations to
achieve the JND of reverberation time. For each plot in Fig. 8, the
inner volume (from the origin of the coordinates to the limen) rep-
resents the uncertainties under JND. The limen of JND for materials
is band-dependent. Fig. 8a gives an example of the correlated
limen at center frequency of 50 Hz, 200 Hz and a linear average
of 15 bands. For brevity, the averaged limen is presented in the rest
of the study.

It is observed that different materials yield different ranges of
standard deviations of the absorption coefficient. For example,
the window has shown the largest possible standard deviation,
while the ceiling and floor would have limited range for standard
deviation. Compared to the initial absorption coefficients, the fitted
absorption coefficients provide a wider range of standard devia-
tions for all the materials. However, the standard deviations from
both sets of absorption coefficients yield narrow ranges, of which
the maximum is 0.04. This becomes even smaller when consider-
ing the correlation among several materials. Nevertheless, these
standard deviations are hardly met in real measurements based
on ISO 354 [33] and even in impedance tube measurements [49].
With this in consideration, in situ measurement is considered nec-
essary in this case to improve the simulated results in order to
match measurements. Besides, the approach of adjusting the input
material to match the Eyring’s equation does not seem to provide
ials to achieve the JND of the reverberation time. (b)-(d) use a linear average of 15
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convincing material properties. A more reliable way to adjust the
material input data can be of interest to investigate in the future.
It should also be noted that the boundary conditions in the simu-
lations are modelled as locally reactive, and the acoustic source
is simplified as omnidirectional.
5.4. Computational efficiency

Comparing the efficiency of two different solvers in a fair man-
ner is non-trivial as the numerical schemes, architecture, imple-
mentation, and parallelization strategies can differ substantially.
The numerical complexities of the two solvers are estimated as fol-
lows. Consider a 3D problem with size kA, where k is the
wavenumber, and A is the characteristic length of the problem.
In the FDTD method, the volumetric simulation domain is dis-

cretized, which results in N � kAð Þ3 unknowns. The complexity of
the explicit FDTD formulation for each time step can be considered
as linear [50]. Thus for M time steps, the time complexity of FDTD

is O M kAð Þ3
� �

and the memory requirement scales with O kAð Þ3
� �

.

In FMBEM, the problem is discretized merely on the boundary

which gives a number of N � kAð Þ2 unknowns. The computational
time and memory requirement of FMBEM are roughly O NlogNð Þ
when the preconditioner is constructed with a constant number
of steps. For M frequencies, the total cost of FMBEM becomes

O M kAð Þ2log kAð Þ
� �

.

In the realization of the algorithms, the explicit FDTD scheme is
relatively easy to implement and convenient for parallelization,
especially using many-core architecture [16,19]. As an example,
for a frequency independent boundary definition, running a two
second-long FDTD simulation of the small seminar room (volume
is 145 m3, see Section 5) using four GPUs (NVIDIA Tesla P100 with
3584 CUDA cores) in parallel, the total computational time is
approximately 3 h using a high sampling frequency f s =
119166 Hz (corresponding to a cubic cell size of approximately
5 mm). This results in N � 1.2 billion unknowns and gives results
that are considered valid in the full audible frequency range (by
using the formula f l=f s ¼ 20000=119166 ¼ 0:196, where 0.196 is
the lowest normalized cutoff frequency of the SRL scheme [17]).
By reducing the sampling frequency by two, the number of
unknowns is significantly dropped to 150 million, and the compu-
tational time reduces to less than 20 min. It is worth mentioning
that the Schroeder frequency of this case is estimated to be around
216 Hz using the linear average of the first six octave bands of the
measured reverberation time.

In contrast, the FMBEM solver is accelerated by multi-threading
on the frequency level. To maximize the solver efficiency, two
mesh resolutions are generated according to the target frequencies.
For the same room model, the coarse mesh model consisting of 21
thousand unknowns gives a valid frequency range up to 276 Hz,
while the fine mesh model consisting of 72 thousand unknowns
gives a valid frequency range up to 535 Hz under the rule of six ele-
ments per wavelength. For a broadband analysis of 40 – 500 Hz
with 0.5 Hz resolution, the total computational time for 921 simu-
lations is approximately 12 h on a desktop with a 10-core CPU
(Intel XeonW-2155 @ 3.3 GHz). As for a comparison, the total com-
putational time for a conventional BEM is estimated to be 161 h
(17 min for each coarse mesh simulation and 3.3 h for each fine
mesh simulation). The computation times presented above are
total wall-clock time excluding the post-processing time.

With the acceleration of parallel computing and modern HPC
clusters (typically equipped with a few hundreds of CPU cores
and/or several GPUs with thousands of CUDA cores), both solvers
are able to simulate sizeable room acoustic problems within a rea-
sonable time in practice.
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6. Conclusion

This paper presented a study on two wave-based methods,
namely FDTD and FMBEM, in the context of room acoustic mod-
elling and simulations. An overview of the sources of the uncer-
tainty from the two wave-based methods was presented, with
the aim of providing guidelines for a reliable control of simulations
in large complex scenarios. Numerical experiments were con-
ducted to address the convergence issues of the two solvers, more
specifically, the selection of the convergence tolerance in FMBEM
and the temporal sampling frequency in FDTD. In order to evaluate
the capability of the two solvers in simulating complex scenarios,
five material input data-sets with increasing complexity were con-
sidered. The simulation results from these five scenarios indicated
that the two solvers provide similar predictions for various room
acoustic parameters. The predicted room acoustic parameters from
the simulations also suggested that considering the frequency
dependency of the input materials does not cause additional
uncertainty to the results of the two solvers. However, including
several materials in the acoustic problem resulted in slightly
higher deviations on T20 and EDT at higher frequency bands.
Besides, large deviations were found between the measurements
and the simulation results regardless of the choice of the material
input data-set. To explain these deviations, the uncertainty of the
two material input data-sets considered for comparing the simula-
tions with the measurements was quantified. This quantification
revealed that the material input data-sets yielded large uncertainty
on the reverberation time, which implies that such data-sets can
hardly represent the actual material properties of the room and
that in situ measurements would be required if a higher correla-
tion of simulations and measurements is desired.
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